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Abstract

In this paper a multivariable subspace-based identification method is applied to experimental modal analysis. The

method shows its efficiency in the identification of data which is contaminated by a great amount of external noise.

Numerical simulation is used to present the main characteristics of the method and compare its performance against other

techniques currently used in experimental modal analysis. The subspace identification method is also applied to data from

a modal test of a practical engineering structure.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The parametric identification of a multiple-input and multiple-output linear and time-invariant dynamical
system is a problem of central importance in modal analysis. It is largely used in structural analysis,
monitoring, model fitting or optimization design and control [1]. Multiple-input and multiple-output testing
has many advantages when compared to single-input and single-output techniques, especially when dealing
with larger structures. The force from multiple inputs allows a more uniform distribution of excitation
energy throughout the structure, improving the accuracy of identified modal parameters and reducing the
testing time.

The most common identification algorithms implemented in the time-domain use recursive linear difference
equation models for describing the input–output relation, such as the auto-regressive with exogenous
excitation (ARX) and auto-regressive moving average with exogenous excitation (ARMAX) [2]. The quality
of identified parameters in those two approaches depends on the estimator adopted in the optimization
process for calculating the fundamental matrix that comprises the model. The ARX model uses the well-
known least-squares (LS) optimization criteria, which is very sensitive to the presence of noise in the data. The
ARMAX model yields better accuracy when adopting iterative and nonlinear optimization schemes, at the
expense of a very high computational effort, which limits its application to problems with a relatively small
amount of data, which is not the case in multiple-input and multiple-output tests.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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An alternative description for input–output relationship is the state-space model and a preferred solution
for system identification is the use of subspace-based methods [3]. The main characteristic of such methods, for
the noise-free situation, consists of the determination of poles using the shift-invariance property of the
structured subspaces, defined by the columns or rows of data matrices obtained directly from the state-space
formulation and input–output signals of the dynamic system. In the case of noise contaminated data, a filtered
structured subspace is obtained by means of a low rank approximation matrix, using the singular value
decomposition (SVD) technique.

The subspace scheme is able to perform a numerically reliable identification of parameters of a complex
multivariable dynamical system, without the costly process of nonlinear search. The possibility of determining
an approximate system order in the identification process, via inspection of the dominant singular value of the
data matrix, is also an advantage of such a scheme.

Recent applications of the subspace technique show its ability to produce good parameter identification
with relatively small computational effort in the case of output-only data information. The works by Peeters
and De Roech [4], Hermans and Van Der Auweraer [5], Mevel et al. [6] and Abdelghani et al. [7], for example,
show applications of output-only subspace methods ranging from civil damage detection to aircraft modal
identification.

The current paper consists on the application of the parametric multiple-input and multiple-output
input–output subspace identification method in experimental modal analysis from empirical input–output
data. The method contributes in providing a robust model order determination based on a low rank
approximation matrix using SVD, followed by natural frequencies and mode shapes estimation. The present
method is distinct from output-only and input–output methods, cited above, since it uses an appropriated
multi-input and single-output (MISO) realization that allows the determination of modal residues/mode
shapes for multiple-input data.

Section 2 of the present paper derives the basic input–output signal relationship in a multivariable subspace
approach. Section 3 addresses the details of finding practical system parameters in terms of poles (natural
frequencies and modal damping) and mode shapes. Section 4 presents a numerical simulation which displays
the technique’s ability to identify parameters under the influence of noise contaminated data. Also in
this section, the experimental testing of a truss structure is shown to further illustrate the applicability
of the method.
2. Basic formulation

The response y(k) of a causal linear time-invariant system to a set of forces u(k) can be described as a finite-
order discrete multivariable state-space model,

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ;

yðkÞ ¼ CxðkÞ þDuðkÞ;
(1)

where x(k) is the n� 1 state-vector, u(k) is an m� 1 input vector corresponding to m inputs and y(k) is an l� 1
output vector associated with l response measurements. The quadruple of matrices [A B C D], with
appropriate dimensions, contains the system dynamic characteristics.

The classical realization problem consists in finding a state-space representation [A B C D], such that
the collection of impulse responses

hðkÞ ¼
D ðk ¼ 0Þ;

CAk�1B ðk40Þ;

(
(2)

of the model matches the impulse response of the dynamical system to be modeled.
The term h(k) of Eq. (2), sometimes referred to as the Markov parameters [3], denotes the l�m matrix of

impulse responses, where hij(k) is a generic element of h(k) representing the response in output i at time k to a
unit impulse applied to input j at time 0.
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The discussion here is limited to minimal state-space models, i.e., models for which the system order n is
minimal. A state-space model is considered minimal if there is no other realization of a degree that is lower
than n [3].

Input–output state-space time-domain realization methods attempt to find the system matrices A–D, from a
given set of input and output data u(k) and y(k).

Sequences of u(k), y(k) and x(k) that satisfy Eq. (1) leads, after manipulation, to the important input–output
matrix relationship:

Yh ¼ CiXþHtUh, (3)

where Yh and Uh are the i-block rows and j-columns Hankel matrices, containing output y(k) and input u(k)
vectors of respective dimensions il� j and im� j as

Yh ¼

yðkÞ yðk þ 1Þ � � � yðk þ j � 1Þ

yðk þ 1Þ yðk þ 2Þ � � � yðk þ jÞ

yðk þ 2Þ yðk þ 3Þ � � � yðk þ j þ 1Þ

..

. ..
. . .

. ..
.

yðk þ i � 1Þ yðk þ iÞ � � � yðk þ i þ j � 2Þ

2
66666664

3
77777775

(4)

and

Uh ¼

uðkÞ uðk þ 1Þ � � � uðk þ j � 1Þ

uðk þ 1Þ uðk þ 2Þ � � � uðk þ jÞ

uðk þ 2Þ uðk þ 3Þ � � � uðk þ j þ 1Þ

..

. ..
. . .

. ..
.

uðk þ i � 1Þ uðk þ iÞ � � � uðk þ i þ j � 2Þ

2
66666664

3
77777775
. (5)

X is a matrix of dimension n� j, containing consecutive state-vectors and defined as

X ¼ xðkÞ xðk þ 1Þ xðk þ 2Þ � � � xðk þ j � 1Þ
� �

. (6)

Ci is the il� n observability matrix formed by the state matrix A and the output influence matrix C as

Ci ¼

C

CA

CA2

..

.

CAi�1

2
6666664

3
7777775
. (7)

Ht is a il� im lower triangular Toeplitz matrix formed from the first i impulse responses as

Ht ¼

D 0 0 � � � 0

CB D 0 � � � 0

CAB CB D � � � 0

..

. ..
. ..

. . .
.

0

CAi�2B CAi�3B CAi�4B � � � D

2
6666664

3
7777775
. (8)

It can be seen from Eq. (7) that the observability matrix Ci has the following shift-invariant structure:

Cð2Þi ¼ Cð1Þi A, (9)
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where submatrices Cð1Þi and Cð2Þi are defined from Ci as

Ci ¼
Cð1Þi

CAi�1

" #
¼

C

Cð2Þi

" #
. (10)

Assuming the realization to be of minimal order n, it follows that the observability matrix Ci is of full rank
n, and the state matrix A can be estimated as

A ¼ Cð1Þþi Cð2Þi , (11)

where the symbol ‘‘+’’ denotes the Moore–Penrose pseudo-inverse of matrix Cð1Þi .
Basically, all the elements necessary to perform the state-space realization based on the input–output matrix

relationship have been presented. The state matrix A is determined by solving Eq. (11) and matrix C can be
obtained from the first block row of Ci. The input influence matrices B and D can be calculated from the
Toeplitz matrix Ht. Appendix A presents a scheme to perform such a realization in practical terms. Several
articles related to the state-space realization theory for input–output data can be found in the literature. The
present formulation however is primarily based on Refs. [3,8,9].

The problem considered in this paper is related to the identification of modal parameters of a flexible
structure given the input and output data measurements. The complex poles of the system are defined as [1]

lp ¼ �sp þ iodp, (12)

where sp is the modal damping parameter, odp ¼ op

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xp

p
is the damped natural frequency, xp is the viscous

damping factor for mode p. The poles are calculated as

lp ¼ log ðzpÞ
�
Dt, (13)

where log denotes natural logarithm, the term zp ¼ elpDt represents the eigenvalues of the state matrix A and
Dt is the time sample adopted in the data acquisition process.

The modal residues associated with the poles lp are defined as

rijðpÞ ¼ fiðpÞfjðpÞ, (14)

where rij(p) is the residue for mode p at point i due to an input at point j and fi(p) is the ith element of the pth
system mode shape. Residues estimation is discussed in the next section.

3. Modal parameters estimation

This section presents the poles and modal residues identification from the system realization based on the
input–output data matrices Uh and Yh, respectively. In order to identify the system order n and minimize the
errors caused by the presence of noise in the estimation of matrix A, a rank-reduction process is applied using
the SVD. A starting high dimension (larger than n) input–output matrix equation allows for an appropriate
column subspace representation of an extended observability matrix Ĉi, which is used to calculate matrix A as
in Eq. (11). The residues are determined, using a particularly useful MISO realization scheme; in such a way
that matrix B directly yields the residues of the system.

3.1. Pole identification

It is assumed that the input u(k) has sufficient energy to excite all modes of the system during the identification
experiment, i.e., the system has persistent excitation [2]. In other words, the input u(k) contains at least n/2
harmonics with distinct frequencies that coincide with the natural frequencies of the system to be identified. Any
white or colored input noise signal also satisfies this assumption. The consequent condition of persistent excitation
is that matrix Uh from Eq. (5) is of full rank, im, considering that j4ðil; imÞ. The SVD of matrix Uh yields,

Uh ¼ Q S 0j0

h i VT
1

VT
2

" #
, (15)
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where matrices Q and S have the same dimension im� im. Matrix 0j0
has dimension im� j0 with j0 ¼ j�im4im.

Matrices V1 and V2 have dimensions j� im and j� j0, respectively. Superscript T denotes matrix trans-
position.

It can be seen from Eq. (15) that matrix Q spans the column space of Uh, whereas matrices V1 and V2 span,
respectively, the row and null spaces of Uh. Post multiplying Eq. (3) by V2 leads to

YhV2 ¼ CiXV2 þHtUhV2 (16)

which results in the following equation,

YhV2 ¼ CiXV2, (17)

where YhV2 has dimension il� j0.
For the case of noise-free data, the rank of both matrices Ci and VT

2X
T is obviously n, which is also the order

of the system. This enforces the product YhV2 of Eq. (17) to be also order of n. Moreover, the n columns of
matrices Ci and VT

2X
T span, respectively, the column and row spaces of YhV2, so that the column space of

YhV2 has the same shift-invariant structure as that of Ci.
For the case where data is contaminated by noise, YhV2 is full rank il, with il4n. However, a rank n column

space of YhV2 can be calculated from the following SVD partition as

YhV2 ¼ Q̂s Q̂n

h i Ŝs 0

0 Ŝn

" #
V̂

T

s

V̂
T

n

2
4

3
5 ¼ Q̂sŜsV̂

T

s þ Q̂nŜnV̂
T

n , (18)

where matrices Q̂s, Ŝs and V̂s have dimensions il� n, n� n and j0� n, respectively. Obviously, in the absence of
noise Ŝn ¼ 0.

The n columns of matrix Q̂s of dimension il� n span the column space of the n-order rank reduced matrix
YhV2 ffi Q̂sŜsV̂

T

s , recovered from a truncated SVD of YhV2 using Eq. (18). Those columns contain also the n

principal left singular vectors corresponding to the n principal singular values of the n� n diagonal matrix Ŝs.
In practice, the order n of the dynamical system can be selected via inspection of the number of the most

significant singular values of YhV2. An estimate of the extended observability matrix Ci, denoted by Ĉi, is then
taken as,

Ĉi ¼ Q̂s (19)

since the theoretical observability matrix Ci and the extended observability matrix Ĉi ¼ Q̂s span the column
space of the data matrix YhV2, respectively, for the ideal free-noise and noise contaminated cases, for some n-
order state-space realization.

The n system’s poles lp are identified using Eqs. (9)–(13).

3.2. Residues and mode shapes estimation

Under the assumption of distinct system’s poles, there are, in fact, an infinite number of state-space
realizations of a system, as represented in Eq. (1). Equivalent representations can be obtained by using an
invertible state-vector transformation T of dimension n� n to define a new state-vector x̄ðkÞ ¼ TxðkÞ, yielding
an equivalent state-space model as

x̄ðk þ 1Þ ¼ TAT�1x̄ðk þ 1Þ þ TBuðkÞ,

yðkÞ ¼ CT�1x̄ðkÞ þDuðkÞ ð20Þ

and producing an equivalent state-space realization given by

Ā ¼ TAT�1 B̄ ¼ TB C̄ ¼ CT�1 D̄ ¼ D
� �

. (21)

The eigenvalues of matrix Ā remain invariant under this transformation T since TAT�1 is a similarity
transformation [9].
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In order to calculate the modal residues rij(p), an appropriate realization, which is valid for the m inputs and
a single-output (MISO) case, is defined as

Ad Bd

Cd Dd

" #
¼

z1 ri1ð1Þ � � � rimð1Þ

. .
. ..

. . .
. ..

.

zn ri1ðnÞ � � � rimðnÞ

1 � � � 1 d1 � � � dm

2
666664

3
777775, (22)

where Ad ¼ Z ¼ diagfz1; . . . ; zng of dimension n� n contains the n parameters zp ¼ elp Dt and each column
of matrix,

Bd ¼

ri1ð1Þ � � � rimð1Þ

..

. . .
. ..

.

ri1ðnÞ � � � rimðnÞ

2
664

3
775 (23)

of dimension n�m contains, directly, the modal residues of the impulse responses hij(z)’s for ith output point
corresponding to the j ¼ 1,y,m input points.

The application of input–output identification procedure presented in this paper produces a generic system
realization given by A B C D

� �
. The particular realization given by Eq. (22) is obtained by applying a

state-vector transformation Td, such that A ¼ T�1d ZTd . Moreover, it can be seen in Eq. (21) the matrices B and
Bd are related by

Bd ¼ TdB, (24)

where the determination of matrix B and an appropriate state-vector transformation Td are, respectively,
described in Appendices A and B.

The modal residues rij(p), for totality of all m inputs and l outputs (multiple-input and multiple-output), are
calculated by applying sequentially the above MISO procedure for each measured output. This way, the
process of finding matrix B is repeated l times, yielding the matrices Bð1Þ Bð2Þ � � � BðlÞ of dimension n�m,
associated with the m inputs and a single output described above. The corresponding Bd matrix is calculated
from Eq. (24) as

Bi
d ¼ TdB

ðiÞ ¼

ri1ð1Þ ri2ð1Þ � � � rimð1Þ

ri1ð2Þ ri2ð2Þ � � � rimð2Þ

..

. ..
. . .

. ..
.

ri1ðnÞ ri2ðnÞ � � � rimðnÞ

2
666664

3
777775. (25)

Finally, the mode shapes are determined using the equality rijðpÞ ¼ fiðpÞfjðpÞ, where fi(p) represents the ith
element of the pth shape mode associated to the pth system pole lp ¼ �sp+iodp.

4. Results

This section presents the performance of the presented subspace realization method on both simulated and
experimental data sets.

4.1. Numerical simulation

A multiple-input and multiple-output example, using computer simulated data sets for 2 inputs and 3
outputs, is shown in order to compare the performance of the subspace method with an auto-regressive with
exogenous input (ARX) method [10]. The impulse response functions h11, h21, h31, h23 and h33 of a typical
(mass, spring and damping) system with three degrees of freedom are generated with poles and correspondent
residues shown, respectively, in the fist column of Tables 1 and 2. The outputs y1, y2 and y3 have been
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Table 1

Identified poles

Original poles Subspace method ARX

l1 ¼ �0:0196þ 6:6533i �0.0199–6.6543i �0.0231–6.6521i

l2 ¼ �0:0496þ 10:5300i �0.0485–10.5297i �0.0606–10.5246i

l3 ¼ �0:1307þ 16:2737i �0.1230–16.2783i �0.1856–16.2319i

Np ¼ 550, Dt ¼ 0:125, i ¼ 20, j ¼ 530, NSR ¼ 0.32

Table 2

Identified residues

Subspace method ARX

Original residue r11

1.4e�06�0.00012i 0.0002�0.0001i 0.0018�0.0001i

4.6e�06�0.00046i 0.0002�0.0046i 0.0028�0.0054i

�1.3e�07+3.7e�06i �0.0006+0.0009i �0.0012+0.0041i

Original residue r12

4.6e�06�0.0008i 0.0004�0.0008i 0.0015�0.0010i

3.6e�06+0.0004i 0.0003+0.0005i 0.0020+0.0017i

1.1e�06+5.8e�05i 0.0003+0.0005i 0.0000+0.0011i

Original residue r13

�3.1e�06�0.0005i �0.0004�0.0003i �0.0014�0.0012i

�4.6e�06+4.6e�04i �0.0004+0.0024i �0.0004+0.0029i

�1.6e�06�9.0e�05i �0.0206�0.0006i �0.0656�0.0010i

Original residue r23

�0.0000–0.0034i �0.0002�0.0033i �0.0029�0.0042i

�7.8e�07�4.1e�05i �0.0002�0.0001i �0.0030�0.0006i

�0.0000+0.0014i �0.0000+0.0012i �0.0011+0.0023i

Original residue r33

0.0000–0.0022i 0.0000�0.0021i 0.0000�0.0019i

9.3e�07�4.6e�005i 0.0001�0.0002i 0.0024�0.0032i

0.0000–0.0022i 0.0004�0.0022i 0.0054�0.0048i
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calculated using the following discrete convolutions:

y1ðkÞ ¼
XNp

s¼0

h11ðsÞu1ðk � sÞ þ
XNp

s¼0

h13ðsÞu2ðk � sÞ,

y2ðkÞ ¼
XNp

s¼0

h21ðsÞu1ðk � sÞ þ
XNp

s¼0

h23ðsÞu2ðk � sÞ,

y3ðkÞ ¼
XNp

s¼0

h31ðsÞu1ðk � sÞ þ
XNp

s¼0

h33ðsÞu2ðk � sÞ, ð26Þ

where u1 and u2 are zero mean Gaussian inputs with amplitude 5. The discretization interval Dt used in the
simulation is 0.125 s. No input process noise is added, whereas white Gaussian noise with zero mean and noise
to signal ratio (NSR) of approximately 0.30 is added to the outputs.

The identification techniques are applied to the input–output data set with a number of samples Np ¼ 550.
Also, i ¼ 20 and j ¼ Np�i ¼ 530 are the assumed values to form the i-blocks rows and j-columns Hankel
matrices Yh and Uh from Eqs. (4) and (5), resulting in a YhV2 matrix of dimension 60� 490 according to
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Fig. 1. Singular values of YhV2.
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Fig. 2. Original and identified frequency response function magnitudes generated via the subspace method.
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Eq. (17). The model order is identified as n ¼ 6 by inspection of the principal singular values of matrix YhV2 as
shown in Fig. 1. Tables 1 and 2 show the identified poles and residues calculated by the presented method as
compared to those obtained via the ARX, using the information of the identified system order, on both
identification procedures. The comparison reveals better parameter estimations in the subspace method
than those obtained via the ARX method. This is typical of the small sensibility to noise of the subspace
method. Fig. 2 shows the comparison of the original and identified frequency response functions through the
subspace method.
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Two other problems associated with the application of the ARX method in modal analysis is the difficulty
to identify the system order in the presence of computational poles as resulting in the analysis. In this example,
it has to reach 6 true system poles within a total of 60 values obtained from the eigenvalues of the companion
matrix calculated by means of an overestimated LS linear solution involving the data matrices [10].

4.2. Experimental results

This section presents the experimental modal identification analysis using the input–output subspace
method presented in this paper. Two tests of a practical structure are considered, one for single-input and
single-output data sets and another for data sets comprised of two simultaneous inputs and two outputs. The
results of the identification consist of the determination of the natural frequencies and vibration mode shapes.
The structure used in the experimental modal identification procedure is a free–free spatial truss with 28
measuring points, as shown in Fig. 3.

For the single-input and single-output test, the structure is excited with uncorrelated pseudo-random input
signal by means of one electromagnetic shaker mounted at point 01. One simultaneous acceleration
measurement is measured for each of the 28 measuring points, making a total of 28 sets of single-input and
single-output tests, conducted at a sampling rate of 2500Hz. The signals are filtered at a cut-off frequency of
1000Hz. A number of Np ¼ 800 data samples are taken at each measuring point. The time-domain subspace-
based identification method, presented in Section 3 above, is performed for each single-input and single-
output testing (m ¼ 1 and l ¼ 1) with a Hankel input Yh and output Uh block matrices of i ¼ 100 rows and
j ¼ Np�i ¼ 700 columns, resulting in a YhV2 matrix of dimension 100� 600 according to Eq. (17).

The first stage in the subspace realization procedure consists in the determination of the minimum order of
the model system. The singular values of YhV2 are displayed in Fig. 4. According to the criteria based on the
inspection of the principal singular values of YhV2, the order used for the analysis is adopted as n ¼ 20. The
second stage of the method is the calculation of the extended observability matrix Ĉi ¼ Q̂s from a rank n

reduced approximation of YhV2, as shown in Eq. (18). The shift-invariant property of matrix Ĉi, of dimension
100� 20, is used for the estimation of poles, according to Eq. (11). Finally, the modal residues are estimated
using the procedure described in Section 3.2.
Fig. 3. The spatial truss.
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Typical synthesized acceleration frequency response function magnitudes are calculated using the identified
poles and modal residues and are shown in Fig. 5. Fig. 6 shows the mean values of such synthesized frequency
response function magnitudes. The measured natural frequencies are calculated as op ¼ Im ðlpÞ

�� ��. The
location of the most relevant frequency response peaks in the synthesized mean frequency response function
magnitude curve are shown in Table 3. The associated real modal deflections of complex mode shapes,
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Fig. 6. Mean value of the magnitude of the synthesized frequency response functions for the single-input and single-output case.

Fig. 7. Modes of vibration for single-input and single-output case corresponding to the following frequencies: (a) 47.5Hz, (b) 127.5Hz, (c)

328.0Hz, (d) 450.0Hz, (e) 495.0Hz and (f) 708.0Hz.

Table 3

Identified natural frequencies

Frequency (Hz)

47.5 127.5 328.0 450.0 495.0 708.0 870.0
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obtained using the modal residues by rijðpÞ ¼ fiðpÞfjðpÞ, are presented in Fig. 7. The real modal deflection is
calculated as fr

iðpÞ ¼ absðfiðpÞÞ sinðangleðfiðpÞÞÞ, where p represents the associated index frequency [11].
A multiple-input and multiple-output experiment is made using the same truss structure excited by two

shakers mounted at points 01 and 16, both using pseudo-random input. Two simultaneous acceleration
measurements are taken for all 28 measuring points characterizing a total of 14 sets of two-input two-output
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Fig. 8. Mean value of the magnitude of the synthesized frequency response functions for the multiple-input and multiple-output case.

Fig. 9. Modes of vibration for multiple-input and multiple-output case corresponding to the following frequencies: (a) 47.5Hz, (b)

127.5Hz, (c) 328.0Hz, (d) 450.0Hz, (e) 495.0Hz and (f) 708.0Hz.
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tests using the cut-off frequency of 1000Hz and the number of time sample points as Np ¼ 800. The
identification (m ¼ 2 and l ¼ 2) multiple-input and multiple-output procedure uses the Hankel input Yh and
output Uh block matrices with i ¼ 100 rows and j ¼ Np�i ¼ 700 columns, resulting in a YhV2 matrix of
dimension 200� 500. The model order adopted in the test, after analysis of the singular values of YhV2 is also
n ¼ 20. The dimension of matrix Ĉi is now 200� 20 from which the poles are estimated. Residues are
calculated according to the procedure described in Section 3.2 by applying twice the MISO residue
identifications for each measured output data set. The mean value of the magnitudes of the synthesized
(frequency response functions) is shown in Fig. 8. The natural frequencies are approximately the same
obtained from the single-input and single-output case and the correspondent mode shapes are presented in
Fig. 9. It is noted that the identified natural frequencies have approximately the same values for both the
single-input and single-output and multiple-input and multiple-output cases, whereas the vibrating mode
shapes present some differences. The differences are gathered to be due to the fact that the truss being
relatively small, the physical interaction of the two excitation shakers tends to slightly modify the shapes of
vibration.
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5. Conclusion

This paper presents the development and application of a multivariate subspace-based state-space
formulation for modal parameter identification using input–output data. The technique, brought to the
context of structural analysis, is grouped in the class of realization-based methods which are mostly used in
electrical engineering applications. Another important contribution of the work is the formulation of residues
derived directly from the system realization model. The ability to provide accurate modal parameters
estimations with a lean computational performance and numerical efficiency makes the method attractive for
both control and modal analysis applications.
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Appendix A. Determination of matrices B and D

Matrices B and D are found through pre- and post-multiplication of Eq. (3) by quantities Q̂
T

n and UT
h ,

respectively, from Eqs. (18) and (3). Considering the orthogonal property of Q̂s and Q̂n from Eq. (18), the
following equality can be established:

Q̂
T

nHt ¼ Q̂
T

nRyuR
�1
uu , (A.1)

where Ryu ¼ YhU
T
h is the il� im cross-correlation matrix of the input and output and Ruu ¼ UhU

T
h is the

im� im autocorrelation matrix of the input. Matrices B and D can be determined, after partitioning and
rearranging of Eq. (A.1), using the standard LS techniques. One appropriate way of computing B and D, can
be found in Ref. [8] as

D

B

� �
¼ ~Q

þ ~R, (A.2)

where the symbol + denotes the Moore–Penrose pseudo-inverse of matrix ~Q to be defined below.
Matrices ~Q and ~R have dimensions in0� (l+n) and in0�m, respectively, with n0 ¼ il�n and are defined as

~Q ¼

Q̂
T

n ð:; 1 : lÞ Q̂
T

n ð:; l þ 1 : liÞQ̂sð1 : lði � 1Þ; :Þ

Q̂
T

n ð:; l þ 1 : 2lÞ Q̂
T

n ð:; 2l þ 1 : liÞQ̂sð1 : lði � 2Þ; :Þ

Q̂
T

n ð:; 2l þ 1 : 3lÞ Q̂
T

n ð:; 3l þ 1 : liÞQ̂sð1 : lði � 3Þ; :Þ

..

. ..
.

Q̂
T

n ð:; lði � 1Þ þ 1 : liÞ 0n0�n

2
6666666664

3
7777777775

(A.3)

and

~R ¼

Rð:; 1 : mÞ

Rð:;mþ 1 : 2mÞ

Rð:; 2mþ 1 : 3mÞ

..

.

Rð:;mði � 1Þ þ 1 : miÞ

2
66666664

3
77777775
. (A.4)

Matrix R ¼ Q̂
T

nRyuR
�1
uu from the above equation represents the right-hand side of Eq. (A.1) and ~R is formed

by partitions of R. For the MISO identification case, to be used in Section 3 for the residues estimation, the



ARTICLE IN PRESS
P.R.G. Kurka, H.N. Cambraia / Journal of Sound and Vibration 312 (2008) 461–475474
first row of matrix ~Q
þ ~R is matrix D in itself, whereas the last n rows determine matrix B. For more

information about the estimation of matrices B and D, see Ref. [8].
Appendix B. Determination of the similarity transformation Td

In order to calculate a state-vector transformation to be used in the residue estimation process adopted here,
it is convenient to introduce two important i-block rows and j-columns Hankel matrix Hi,j of impulse
responses and their appropriate factorization. The first Hankel matrix is defined as [3]

Hi;j ¼

CB CAB � � � CAj�1B

CAB CA2B � � � CAjB

..

. ..
. . .

. ..
.

CAi�1B CAiB � � � CAiþj�2B

2
66664

3
77775 ¼ CiXj, (B.1)

where Ci is the il� n observability matrix described in Eq. (7) and Xj ¼ ½B AB � � � Aj�1B � is the
controllability matrix with dimension n� jm. Two useful factorizations of matrix Hi,j can be derived, in terms
of the system observability and controllability matrices as

H1;j ¼ Cð1Þi Xj,

H2;j ¼ Cð2Þi Xj ¼ Cð1Þi AXj. ðB:2Þ

Matrix Hi,j can also be expressed in terms of individual elements of the scalar impulse response function,

hijðkÞ ¼
Xn

p¼1

rijðpÞ e
lp Dtk, (B.3)

that is,

Hi;j ¼

hijð1Þ hijð2Þ � � � hijðjÞ

hijð2Þ hijð3Þ � � � hijðj þ 1Þ

..

. ..
. . .

. ..
.

hijðiÞ hijði þ 1Þ � � � hijði þ j � 1Þ

2
6666664

3
7777775

¼

1 � � � 1

z1 � � � zn

..

. . .
. ..

.

zi�1
1 � � � zi�1

n

2
6666664

3
7777775

rijð1Þ

. .
.

rijðnÞ

2
6664

3
7775

1 z1 � � � z
j�1
1

..

. ..
. . .

. ..
.

1 zn � � � zj�1
n

2
66664

3
77775 ¼ PiRPj, ðB:4Þ

where Pi has a Vandermonde structure comprised of terms zl
p ¼ elp Dt

	 
l
. Matrix Hi,j, described in terms of

Vandermonde structure above, admits the following factorization:

H1;j ¼ Pð1Þi RPj,

H2;j ¼ Pð2Þi RPj ¼ Pð1Þi ZRPj, ðB:5Þ

where Z ¼ diagf z1 � � � zn g.
The state-vector transformation matrix Td is obtained by making a connection between factorizations (B.2)

and (B.5) for the single-input and single-output case as

H2;j ¼ Cð1Þi AXj ¼ Pð1Þi ZRPj (B.6)
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or equivalently,

Cð1Þi AXj ¼ Pð1Þi TdT
�1
d

	 

Z TdT

�1
d

	 

RPj. (B.7)

Imposing on the above equation the condition A ¼ T�1ZT required in the particular realization described in
Eq. (22), it follows immediately from above equation that

Cð1Þi ¼ Pð1Þi Td (B.8)

or

Td ¼ Pð1Þþi Cð1Þi , (B.9)

where + denotes the Moore–Penrose pseudo-inverse. Cambraia [10] shows that the transformation matrix Td

calculated as Eq. (B.9) is also valid for MISO case.
Eq. (B.9) shows the expression of matrix Td. In practice, the observability matrix Ci can be approximated by

the extended observability matrix Ĉi ¼ Q̂s as in Eq. (19) resulting in the following practical expression for Td

to be used for residues calculation

Td ¼ Pð1Þþj Ĉ
ð1Þ

i ¼ Pð1Þþj Q̂
ð1Þ

s , (B.10)

where matrix Pj is calculated from Eq. (B.4) using the identified poles and Q̂s is obtained from Eq. (18) for the
MISO case according to the correspondent residues index rijðpÞ ¼ fiðpÞfjðpÞ.
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